Kıl Keçilerinin Vücut Ölçülerini Kullanarak Canlı Ağırlıklarını Tahmin Etmede Kısmi En Küçük Kareler ve Temel Bileşenler Regresyon Yöntemlerinin Karşılaştırılması

Author:

Akyürek Sağır Seda1,Akkol Suna2

Affiliation:

1. ANKARA ÜNİVERSİTESİ

2. YÜZÜNCÜ YIL ÜNİVERSİTESİ

Abstract

Bu çalışmanın amacı, çoklu bağlantı probleminin varlığında kıl keçilerinde çeşitli vücut ölçüleri kullanılarak canlı ağırlıklarının tahmin edilmesinde Kısmi En Küçük Kareler (KEKK) ve Temel Bileşenler (TB) regresyon yöntemlerinin kullanılması ve çalışma verisi için en iyi tahmin yönteminin bulunarak sonuçların yorumlanması amaçlanmıştır. Bu amaçla, 119 baş dişi kıl keçisinden ölçümü yapılmış canlı ağırlıklar ve çeşitli vücut ölçüleri (cidago yüksekliği, sağrı yüksekliği, sırt yüksekliği, vücut uzunluğu, göğüs derinliği, göğüs genişliği ve göğüs çevresi) kullanılmıştır. 10 katmanlı çapraz doğrulama sonunda her iki yöntem için gizil faktör sayısı iki olmuştur. Açıklanan toplam varyans KEKK ile %82,10, TB ile %80,04 ve HKO sırasıyla 0,213 ve 0,230 olarak elde edilmiştir. Buna göre, kıl keçilerinde çeşitli vücut ölçüleri kullanılarak canlı ağırlığın tahmin edilmesinde toplam açıklanan varyasnın daha yüksek ve HKO’sının daha düşük olması nedeniyle KEKK, TB regresyon yönteminden daha güvenilir olduğu sonucuna ulaşılmıştır. Ancak her iki yöntemde canlı ağırlıktaki değişimi açıklamada en yüksek etkiye sahip olan değişken GC olarak bulunmuştur. Dolayısıyla kıl keçilerinde canlı ağırlık üzerinde yapılacak seleksiyon çalışmalarında GC’nin önemli bir kriter olduğu bu çalışmada ulaşılan diğer bir sonuçtur.

Publisher

Osmaniye Korkut Ata Universitesi

Reference7 articles.

1. Abdelgadir GA., Eledum HA. Comparison study of ridge regression and principal component regression with application. International Journal of Research 2016; 3(8): 283.

2. Abdi H. Partial least square regression (PLS) regression. Encyclopedia for Research Methods For The Social Sciences 2003; 6(4): 792-795.

3. Akyürek S., Akkol S. Yumurta iç kalite özelliklerinin kısmi en küçük kareler regresyonu kullanılarak tahmin edilmesi. Yuzuncu Yıl University Journal of Agricultural Sciences 2018; 28(4): 473-481.

4. Akkol S. The prediction of live weight of hair goats through penalized regression methods: LASSO and adaptive LASSO. Archives Animal Breeding 2018; 61(4): 451-458

5. Albayrak AS. Çoklu doğrusal bağlantı halinde en küçük kareler tekniğinin alternatifi yanlı tahmin teknikleri ve bir uygulama. Sosyal Bilimler Dergisi 2005; 1(1): 106-126.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3