Abstract
We make two relaxations of the Oliker-Prussner method for the Dirichlet problem for the Monge-Ampere equation. First we relax the convexity requirement and consider mesh functions which are only discrete convex. The second relaxation consists in using a finite stencil. The discrete nonlinear equations are solved with a damped Newton's method. We give two proofs of convergence of the resulting scheme for right-hand side a density, on domains which are convex and not necessarily strictly convex, under the assumption that the boundary data has a continuous convex extension. The first proof is based on the notion of Aleksandrov solution while the second uses viscosity solutions.
For more information see https://ejde.math.txstate.edu/conf-proc/26/a2/abstr.html
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献