Space-time analyticity of weak solutions to semilinear parabolic systems with variable coefficients

Author:

Baustian Falko,Takac Peter

Abstract

We study analytic smooth solutions of a general, strongly parabolic semilinear Cauchy problem of 2m-th order in \(\mathbb{R}^N\times (0,T)\) with analytic coefficients (in space and time variables) and analytic initial data (in space variables).They are expressed in terms of holomorphic continuation of global (weak) solutions to the system valued in a suitable Besov interpolation space of \(B^{s;p,p}\)-type at every time moment \(t\in [0,T]\). Given \(0 < T'< T\leq \infty\), it is proved that any \(B^{s;p,p}\)-type solution \(u: \mathbb{R}^N\times (0,T)\to \mathbb{C}^M\) with analytic initial data possesses a bounded holomorphic continuation \(u(x + \mathrm{i}y, \sigma + \mathrm{i}\tau)\) into a complex domain in \(\mathbb{C}^N\times \mathbb{C}\) defined by \((x,\sigma)\in \mathbb{R}^N\times (T',T)\), \(|y| < A'\) and \(|\tau | < B'\), where \(A', B'> 0\) are constants depending upon~\(T'\). The proof uses the extension of a weak solution to a \(B^{s;p,p}\)-type solution in a domain in\(\mathbb{C}^N\times \mathbb{C}\), such that this extension satisfies the Cauchy-Riemann equations. The holomorphic extension is obtained with a help from holomorphic semigroups and maximal regularity theory for parabolic problems in Besov interpolation spaces of \(B^{s;p,p}\)-type imbedded (densely and continuously) into an \(L^p\)-type Lebesgue space. Applications include \emph{risk models} for European options in Mathematical Finance. For more information see  https://ejde.math.txstate.edu/special/01/b1/abstr.html

Publisher

Texas State University

Subject

Analysis

Reference83 articles.

1. R. A. Adams and J. J. F. Fournier; Sobolev Spaces, 2nd ed., Academic Press, New York- Oxford, 2003.

2. S. Agmon; Lectures on Elliptic Boundary Value Problems, in Van Nostrand Mathematical Studies, Vol. 2. D. Van Nostrand Co., Inc., Princeton, N.J., 1965.

3. B. Alziary and P. Takac; On the Heston model with stochastic volatility: analytic solutions and complete markets, Electr. J. Differential Equations, Vol. 2018 (2018), No. 168, pp. 1-54. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu. Preprint in arXiv:1711.04536v1

4. [math.AP], 13th November 2017. (http://arxiv.org/abs/1711.04536)

5. H. Amann; Global existence for semilinear parabolic systems, J. Reine Angew. Math., 360 (1985), 47-83.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3