Author:
Maia Liliane de A.,Oliveira Junior Jose Carlos,Ruviaro Ricardo
Abstract
We study the quasilinear problem $$\displaylines{ -\text{div}(h^2(u)\nabla u) + h(u)h'(u)|\nabla u|^2+u =-\lambda |u|^{q-2}u+|u|^{2 \cdot 2^*-2}u\quad \text{in } \Omega, \cr \frac{\partial u}{\partial\eta}= \mu g(x,u) \quad \text{on } \partial \Omega, }$$ where \(\Omega \subset \mathbb{R}^3\) is a bounded domain with regular boundary \(\partial \Omega\), \(\lambda,\mu>0\), \(1<q<4\), \(2\cdot2^{\ast}=12\), \(\frac{\partial }{\partial\eta}\) is the outer normal derivative and \(g\) has a subcritical growth in the sense of the trace Sobolev embedding. We prove a regularity result for all weak solutions for a modified, and introducing a new type of constraint, we obtain a multiplicity of solutions, including the existence of a ground state.
For more information see https://ejde.math.txstate.edu/special/01/m3/abstr.html
Reference31 articles.
1. J. F. L. Aires, M. A. S. Souto; Existence of solutions for a quasilinear Schrodinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924-946.
2. A. V. Borovskii, A. L. Galkin; Dynamical modulation of an ultrashort high-intensity laser pulse in matter, JETP 77, 4 (1993), 562-573.
3. A. de Bouard, N. Hayashi, J. C. Saut; Global existence ofsmall solutions to a relativistic nonlinear Schrodinger equation, Comm. Math. Phys., 189 (1997), 73-105.
4. A. de Bouard, N. Hayashi, J. C. Saut; Scattering problem and asymptotics for a relativistic nonlinear Schrodinger equation, Nonlinearity, 12 (1999), 1415-1425.
5. H. Brezis, E. H. Lieb; A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, no. 3, (1983), 486-490.