Author:
Chang Caihong,Zhang Zhengce
Abstract
This article concerns the blow up behavior for the Henon type parabolic equation withexponential nonlinearity, $$ u_t=\Delta u+|x|^{\sigma}e^u\quad \text{in } B_R\times \mathbb{R}_+, $$ where \(\sigma\geq 0\) and \(B_R=\{x\in\mathbb{R}^N: |x|<R\}\).We consider all cases in which blowup of solutions occurs, i.e. \(N\geq 10+4\sigma\).Grow up rates are established by a certain matching of different asymptotic behaviorsin the inner region (near the singularity) and the outer region (close to the boundary).For the cases \(N>10+4\sigma\) and \(N=10+4\sigma\), the asymptotic expansions of stationary solutions have different forms, so two cases are discussed separately. Moreover, different inner region widths in two cases are also obtained.
Reference57 articles.
1. N. D. Alikakos, P. W. Bates, C. P. Grant; Blow up for a diffusion-advection equation, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 181-190.
2. J. M. Arrieta, A. B. Rodriguez, Ph. Souplet; Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Sc. Norm. Super. Pisa Cl. Sci., 3 (2004), 1-15.
3. M. Badiale, E. Serra; Multiplicity results for the supercritical Henon equation, Adv. Nonlinear Stud., 4 (2004), 453-467.
4. E. M. Barboza, O. H. Miyagaki, F. R. Pereira, C. R. Santana; Henon equation with nolin- earities involving Sobolev critical growth in H1 0,rad(B1), Electron. J. Differential Equations, Vol. 2021 (2021), No. 20, 1-18 EJDE-2022/42 ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS 17
5. J. Bebernes, S. Bricher; Final time blowup profiles for semilinear parabolic equations via center manifoldtheory, SIAM J. Math. Anal., 23 (1992), 852-869.