Abstract
We consider a nonlinear degenerate reaction-diffusion equation. First we prove that if the initial state is nonnegative, then the solution remains nonnegative for all time. Then we prove the approximate controllability between nonnegative states via multiplicative controls, this is done using the reaction coefficient as control.
For more information see https://ejde.math.txstate.edu/Volumes/2020/59/abstr.html
Reference50 articles.
1. F. Alabau-Boussouira, P. Cannarsa, G. Fragnelli: Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6, no. 2, (2006), 161-204. https://doi.org/10.1007/s00028-006-0222-6
2. F. Alabau-Boussouira, P. Cannarsa, C. Urbani; Exact controllability to the ground state solution for evolution equations of parabolic type via bilinear control, preprint.
3. P. Baldi, G. Floridia, E. Haus; Exact controllability for quasi-linear perturbations of KdV, Analysis & PDE, 10, no. 2, (2017), 281-322 (ArXiv: 1510.07538). https://doi.org/10.2140/apde.2017.10.281
4. J. M. Ball; Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proceedings of the American Mathematical Society 63, (1977), 370-373. https://doi.org/10.1090/S0002-9939-1977-0442748-6
5. J. M. Ball, J. E. Marsden, M. Slemrod; Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, no. 4, (1982), 555-587. https://doi.org/10.1137/0320042
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献