Author:
Allahverdiev Bilender P.,Tuna Huseyin
Abstract
In this article, we investigate the resolvent operator of a singular q-Dirac system. We obtain an integral representations for the resolvent of this system, in terms of the spectral function. Furthermore, we give a formula for the Titchmarsh-Weyl function of q-Dirac system using the integral representation of the resolvent.
For more information see: https://ejde.math.txstate.edu/Volumes/2020/03/abstr.html
Reference26 articles.
1. Aldwoah, K. A.; Malinowska, A. B.; Torres, D. F. M.; The power quantum calculus and variational problems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 19 (2012), 93-116.
2. Allahverdiev, B. P.; Tuna, H.; Some properties of the resolvent of Sturm-Liouville operators on unbounded time scales. Mathematica 61 (84) (2019), No.1, 3-21. https://doi.org/10.24193/mathcluj.2019.1.01
3. Allahverdiev, B. P.; Tuna, H.; Resolvent operator of singular Dirac system with transmission conditions. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan., 23 (538) (2019), 85-105. https://doi.org/10.21857/mnlqgc00ny
4. Allahverdiev, B. P.; Tuna, H.; A representation of the resolvent operator of sin gular Hahn-Sturm-Liouville problem. Numer. Funct. Anal. Optimiz., DOI: 10.1080/01630563.2019.1658604. https://doi.org/10.1080/01630563.2019.1658604
5. Allahverdiev, B. P.; Tuna, H.; The resolvent operator of singular conformable fractional Diracsystem. Gulf J. Math. 7 (3) (2019), 7-25. https://doi.org/10.56947/gjom.v7i3.2