Author:
Gharehgazlouei Fariba,Graef John R.,Heidarkhani Shapour,Kong Lingju
Abstract
In this article, the authors consider a fractional p-Laplacian elliptic Dirichlet problem. Using critical point theory and the variational method, they investigate the existence of at least one, two, and three solutions to the problem. Examples illustrating the results are interspaced in the paper.
Reference22 articles.
1. R. A. Adams, J. J. F. Fournier; Sobolev Spaces, Second Edition, Pure and Applied Mathematics, Vol. 140, Elsevier, Amsterdam, 2003.
2. J. Bertoin; L evy Processes, Cambridge Tracts in Mathematics, Vol. 121, Cambridge University Press, Cambridge, 1996.
3. M. Bohner, G. Caristi, F. Gharehgazlouei, S. Heidarkhani; Existence and multiplicity of weak solutions for a Neumann elliptic problem with p(x)-Laplacian, Nonauton. Dyn. Syst., 2020 (2020), 53-64.
4. G. Bonanno; A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992-3007.
5. G. Bonanno; Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 1 (2012), 205-220.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献