Abstract
In this article, we consider a viscoelastic wave equation with Balakrishnan-Taylor damping, and finite and infinite memory terms in a bounded domain. Under suitable assumptions on relaxation functions and with certain initial data, by adopting the perturbed energy method, we establish a decay of energy which depends on the behavior of the relaxation functions.
For more information see https://ejde.math.txstate.edu/Volumes/2020/42/abstr.html
Reference24 articles.
1. A. V. Balakrishnan, L. W. Taylor; Distributed parameter nonlinear damping models for flight structures, Proceeding Daming 89, Flight Dynamics Lab and Air Force Wright Aeronautical Lads. WPAFB, (1989).
2. R. W. Bass, D. Zes; Spillover, nonlinearity and flexible structures, Proceeding of 30th IEEE Conference on Decision and Control, (1991), 1633-1637.
3. S. Boulaaras, A. Draifia, K. Zennir; General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Tayor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), no. 14, 4795-4814. https://doi.org/10.1002/mma.5693
4. X. M. Cao; Energy decay of solutions for a variable-coefficient viscoelastic wave equation with a weak nonlinear dissipation, J. Math. Phys., 57 (2016), no.2, 021509, 16pp. https://doi.org/10.1063/1.4941038
5. M. M. Cavalcanti, H.P. Oquendo; Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control and Optim., 42 (2003), no. 4, 1310-1324. https://doi.org/10.1137/S0363012902408010
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献