Abstract
In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j> 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}>0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i< j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method.
For more information see https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html
Reference19 articles.
1. A. Ambrosetti, E. Colorado; Standing waves of some coupled nonlinear Schrodinger equations. J. Lond. Math. Soc., 75 (2007), 67-82.
2. T. Bartsch, Z. Liu, T. Weth; Sign-changing solutions of superlinear Schrodinger equations. Comm. Partial Differential Equations, 29 (2004), 25-42.
3. T. Bartsch, Z.-Q. Wang; Note on ground states of nonlinear Schrodinger systems, J. Patial Differential Equations, 19 (2006), 200-207.
4. S.-M. Chang, C.-S. Lin, T.-C. Lin, W.-W. Lin; Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D., 196 (2004), 341-361.
5. Z. Chen, C.-S. Lin, W. Zou; Multiple sign-changing and semi-nodal solutions for coupled Schrodinger equations. J. Differential Equations, 255 (2013), 4289-4311.