Author:
Van Anh Nguyen Thi,Thi Hai Yen Bui
Abstract
In this article, we study the existence of the integral solution to the neutral functional differential inclusion
$${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t), \quad\text{for a.e. }t \in J:=[0,\infty),\\ y_0=\phi \in C_E=C([-r,0];E),\quad r>0,}$$
and the controllability of the corresponding neutral inclusion
$${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t)+Bu(t),\quad \text{for a.e. } t \in J,\\ y_0=\phi \in C_E,}$$
on a half-line via the nonlinear alternative of Leray-Schauder type for contractive multivalued mappings given by Frigon. We illustrate our results with applications to a neutral partial differential inclusion with diffusion, and to a neutral functional partial differential equation with obstacle constrains.
Reference40 articles.
1. M. Adimy, M. Alia, K. Ezzinbi; Functional differential equations with unbounded delay in extrapolation spaces, Electronic Journal of Differential Equations, 2014 (2014) No. 180, 1-16.
2. M. Adimy, A. Elazzouzi, K. Ezzinbi; Bohr-Neugebauer type theorem for some partial neutral functional differential equations, Nonlinear Analysis: Theory, Methods & Applications, 66(5) (2007), 1145-1160. https://doi.org/10.1016/j.na.2006.01.011
3. M. Adimy, K. Ezzinbi; A class of linear partial neutral functional differential equations with non-dense domain, J. Differential Equations, 147 (1998), 285-332. https://doi.org/10.1006/jdeq.1998.3446
4. M. Adimy, K., Ezzinbi; Existence and linearized stability for partial neutral functional dif- ferential equations with non-dense domain, Differ. Equ. Dyn. Syst., 7 (1999), 371-417.
5. M. Adimy, K. Ezzinbi, M. Laklach; Spectral decomposition for partial neutral functional differential equations.Can. Appl. Math. Q., 9(1) (2001), 1-34.