Author:
Le Trong Thanh Bui,Ngoc Quoc Thuong Nguyen
Abstract
Abstract:We study the well-posedness of the generalized viscous Cahn-Hilliard equation with nonlinear source term. Then, we analyze the singular limits when the relaxed terms vanish. In the sense of Young measures, we obtain the measure-valued solution of a forward-backward parabolic type equation.
For more information see https://ejde.math.txstate.edu/Volumes/2020/07/abstr.html
Reference19 articles.
1. G. I. Barenblatt, M. Bertsch, R. Dal Passo, M. Ughi; A degenerate pseudo-parabolic regularization of a nonlinear forward-backward heat equation arising in the theory of heat and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24 (1993), 1414-1439. https://doi.org/10.1137/0524082
2. L. Cherfils, A. Miranville, S. Zelik; The Cahn-Hilliard Equation with Logarithmic Potentials, Milan J. Math., Vol. 79 (2011), 561-596. https://doi.org/10.1007/s00032-011-0165-4
3. A. Debussche, L. Dettori; On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. https://doi.org/10.1137/S0036141094267662
4. C. M. Elliott, H. Garcke; On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491-1514. https://doi.org/10.1016/0362-546X(94)00205-V
5. C. M. Elliott, S. Luckhaus; A generalized diffusion equation for phase separation of a multicomponent mixture with interfacial energy, SFB 256 Preprint No. 195, University of Bonn, (1991).