Gevrey regularity of the solutions of inhomogeneous nonlinear partial differential equations

Author:

Remy Pascal

Abstract

In this article, we are interested in the Gevrey properties of the formal power series solutions in time of some inhomogeneous nonlinear partial differential equations with analytic coefficients at the origin of Cn+1. We systematically examine the cases where the inhomogeneity is s-Gevrey for any s≥0, in order to carefully distinguish the influence of the data (and their degree of regularity) from that of the equation (and its structure). We thus prove that we have a noteworthy dichotomy with respect to a nonnegative rational number sc fully determined by the Newton polygon of a convenient associated linear partial differential equation: for any s≥sc, the formal solutions and the inhomogeneity are simultaneously s-Gevrey; for any s<sc, the formal solutions are generically sc-Gevrey. In the latter case, we give an explicit example in which the solution is s'-Gevrey for no s'<sc. As a practical illustration, we apply our results to the generalized Burgers-Korteweg-de Vries equation.

Publisher

Texas State University

Subject

Analysis

Reference49 articles.

1. M. Abramowitz, I. A. Stegun; Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, INC., New-York, 1965.

2. W. Balser; Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New-York, 2000.

3. W. Balser, M. Loday-Richaud; Summability of solutions of the heat equation with inhomo- geneous thermal conductivity in two variables, Adv. Dyn. Syst. Appl., 4 (2009) (2), 159-177.

4. M. Canalis-Durand, J. P. Ramis, R. Sch¨afke, Y. Sibuya; Gevrey solutions of singularly per- turbed differential equations, J. Reine Angew. Math., 518 (2009), 95-129.

5. I. Fukuda; Asymptotic behavior of solutions to the generalized KdV-Burgers equation with a slowly decaying data, J. Math. Anal. Appl., 480 (2019) (2).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gevrey Formal Power Series;Lecture Notes in Mathematics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3