Author:
Rouhani Behzad Djafari,Piranfar Mohsen Rahimi
Abstract
We consider the quasi-autonomous first-order gradient system $$\displaylines{ \dot{u}(t)=\nabla\phi(u(t))+f(t),\quad t\in [0,+\infty)\cr u(0)=x_0\in H, }$$ where \(\phi:H\to\mathbb{R}\) is a differentiable quasiconvex function such that \(\nabla\phi\) is Lipschitz continuous. We study the asymptotic behavior of solutions to this system in continuous and discrete time. We show that each solution either approaches infinity in norm or converges weakly to a critical point of \(\phi\). This further concludes that the existence of bounded solutions and implies that \(\phi\) has a nonempty set of critical points. Some strong convergence results, as well as numerical examples, are also given in both continuous and discrete cases.
For more information see https://ejde.math.txstate.edu/Volumes/2021/15/abstr.html
Reference16 articles.
1. J. B. Baillon; Un theor`eme de type ergodique pour les contractions non lineaires dans un espace de Hilbert. C.R.Acad.Sci. Paris 280 (1975) 1511-1514.
2. J. B. Baillon; Un exemple concernant le comportement asymptotique de la solution du probl`eme du/dt + ∂φ(u) 3 0. J. Funct. Anal. 28 (1978) 369-376.
3. J. B. Baillon, H. Brezis; Une remarque sur le comportement asymptotique des semi-groupes non lineaires. Houston J. Math. 2 (1976) 5-7.
4. H. H. Bauschke, P. L. Combettes; Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed., Springer, New York, 2017.
5. H. Brezis; Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud. 5 (1973).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献