Author:
Shan Maria A.,Skrypnik Igor I.,Voitovych Mykhailo V.
Abstract
We prove Harnack's inequality for bounded weak solutions to quasilinear second order elliptic equations with generalized Orlicz growth conditions. Our approach covers new cases of variable exponent and (p,q) growth conditions.
For more information see https://ejde.math.txstate.edu/Volumes/2021/27/abstr.html
Reference41 articles.
1. Yu. A. Alkhutov; The Harnack inequality and the Holder property of solutions of nonlinear elliptic equations with a nonstandard growth condition (Russian), Differ. Uravn., 33 (1997), No. 12, 1651-1660; translation in Differential Equations, 33 (1998), No. 12, 1653-1663.
2. Yu. A. Alkhutov, O. V. Krasheninnikova; Continuity at boundary points of solutions of quasilinear elliptic equations with a nonstandard growth condition (Russian), Izv. Ross. Akad. Nauk Ser. Mat., 68 (2004), No. 6, 3-60; translation in Izv. Math., 68 (2004), No. 6, 1063- 1117.
3. Yu. A. Alkhutov, O. V. Krasheninnikova; On the continuity of solutions of elliptic equations with a variable order of nonlinearity (Russian), Tr. Mat. Inst. Steklova, Differ. Uravn. i Din. Sist., 261 (2008), 7-15; translation in Proc. Steklov Inst. Math., 261 (2008), No. 1, 1-10.
4. Yu. A. Alkhutov, M. D. Surnachev; A Harnack inequality for a transmission problem with p(x)-Laplacian, Appl. Anal., 98 (2019), No. 1-2, 332-344.
5. Yu. A. Alkhutov, M. D. Surnachev; Harnack's inequality for the p(x)-Laplacian with a two- phase exponent p(x), Translation of Tr. Semin. im. I. G. Petrovskogo, No. 32 (2019), 8-56; J. Math. Sci. (N.Y.), 244 (2020), No. 2, 116-147.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献