Author:
Huang Chuangxia,Wang Jiafu,Huang Lihong
Abstract
In this article we study a delayed Nicholson-type system involving patch structure. We apply differential inequality techniques to establish a sufficient condition for the existence of positive asymptotically almost periodic solutions. By constructing suitable Lyapunov functions, we obtain a new criterion for the uniqueness and global attractivity of the asymptotically almost periodic solutions.
For more information see https://ejde.math.txstate.edu/Volumes/2020/61/abstr.html
Reference23 articles.
1. N. S. Al-Islam, S. M. Alsulami, T. Diagana; Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations, Appl. Math. Comput., 218 (2012), 6536-6548. https://doi.org/10.1016/j.amc.2011.12.026
2. L. Barreira, C. Valls; Ck invariant manifolds for infinite delay, Electron. J. Differential Equations, 2019 (50) (2019), 1-15.
3. T. Diagana; Weighted pseudo almost periodic functions and applications, C. R. Acad. Sci. Paris. Ser. I, 343 (10) (2006), 643-646. https://doi.org/10.1016/j.crma.2006.10.008
4. A. M. Fink; Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377, Springer, Berlin, 1974. https://doi.org/10.1007/BFb0070324
5. P. Gao, S. L. Wu; Qualitative properties of traveling wavefronts for a three-component lattice dynamical system with delay, Electron. J. Differential Equations, 2019 (34) (2019), 1-19.