Author:
Levandosky Julie L.,Vera Octavio
Abstract
In this article we study the smoothness properties of solutions to a two-dimensional coupled Zakharov-Kuznetsov system. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0,v0) possesses certain regularity and sufficient decay as x → ∞, then the solution (u(t),v(t)) will be smoother than (u0, v0) for 0 < t ≤ T where T is the existence time of the solution.
Reference24 articles.
1. M. S. Alves, O. Vera Villagrán; Smoothing properties for a coupled system of nonlinear evolution dispersive equations, Indag. Math., 20 no. 2 (2009), 285-327. https://doi.org/10.1016/S0019-3577(09)80015-3
2. O. V. Besov, V. P. II'in, S. M. Nikolskii; Integral representations of functions and imbedding theorem. Vol. I. J. Wiley. 1978.
3. J. C. Ceballos, M. Sepulveda, O. Vera; Gain in regularity for a coupled nonlinear Schrödinger system, Bol. Soc. Parana. Mat., 24 (2006), 41-68.
4. A. Cohen; Solutions of the Korteweg-de Vries equation from irregular data, Duke Math. J., 45 (1978) 149-181. https://doi.org/10.1215/S0012-7094-78-04511-8
5. P. Constantin, J. C. Saut; Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1 (1988), 413-439. https://doi.org/10.1090/S0894-0347-1988-0928265-0