Author:
Lan Yongyi,Tang Biyun,Hu Xian
Abstract
In this article, we study the nonlinear Schrodinger-Poisson system $$\displaylines{ -\Delta u+u-\mu\frac{u}{|x|^2}+l(x) \phi u=k(x)|u|^{p-2}u \quad x\in\mathbb{R}^3, \cr -\Delta\phi=l(x)u^2 \quad x\in\mathbb{R}^3, }$$ where \(k\in C(\mathbb{R}^3)\) and 4<p<6, k changes sign in \(\mathbb{R}^3\) and \(\limsup_{|x|\to\infty}k(x)=k_{\infty}<0\). We prove that Schrodinger-Poisson systems with Hardy potential and indefinite nonlinearity have at least one positive solution, using variational methods.
For more information see https://ejde.math.txstate.edu/Volumes/2020/47/abstr.html
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献