Abstract
In this article we prove the existence of an infinite number of radial solutions to \(\Delta U + K(x)f(U)= 0\) on the exterior of the ball of radius \(R>0\) centered at the origin in \(\mathbb{R}^N\) with \(U=0\) on \(\partial B_{R}\), and \(\lim_{|x| \to \infty} U(x)=0\) where \(N>2\), \(f(U) \sim \frac{-1}{|U|^{q-1}U} \) for small \(U \neq 0\) with \(0<q<1\), and \(f(U) \sim |U|^{p-1}U\) for large \(|U|\) with \(p>1\). Also, \(K(x) \sim |x|^{-\alpha}\) with \( \alpha >2(N-1)\) for large \(|x|\).
For more information see https://ejde.math.txstate.edu/Volumes/2021/68/abstr.html
Reference13 articles.
1. B. Azeroual, A. Zertiti; On multiplicity of radial solutions to Dirichlet problem involving the pâLaplacian on exterior domains, International Journal of Applied Mathematics, Volume 31 (2018), Number 1, 121-147.
2. H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82 (1983), 313-347.
3. H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82 (1983), 347-375.
4. M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
5. G. Birkhoff, G. C. Rota; Ordinary Differential Equations, John Wiley and Sons, 1962.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献