Author:
Barreira Luis,Llibre Jaume,Valls Claudia
Abstract
A polynomial differential system of degree 2 has no global centers (that is, centers defined in all the plane except the fixed point). In this paper we characterize the global centers of cubic Hamiltonian systems symmetric with respect to the x-axis, and such that the center has purely imaginary eigenvalues.
For more information see https://ejde.math.txstate.edu/Volumes/2020/57/abstr.html
Reference11 articles.
1. J. C. Artés, J. Llibre. N. Vulpe; Complete geometric invariant study of two classes of quadratic systems, Electronic J. Differential Equations 2012 (2012), No. 9, pp. 1-35.
2. F. Dumortier, J. Llibre, J.C. Art'es; Qualitative Theory of Planar Differential Systems, Springer Verlag, New York, 2006.
3. A. Cima, J. Llibre; Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. and Appl. 147 (1990), 420-448. https://doi.org/10.1016/0022-247X(90)90359-N
4. H. Dulac; Détermination et integartion d'une certaine classe d'équations différentielle ayant par point singulier un centre, Bull. Sci. Math. 32 (1908), 230-252.
5. W. P. Li, J. Llibre, J. Yang, Z. Zhang; Limit cycles bifurcating from the period annulus of quasihomogeneous centers, J. Dynam. Differential Equations 21 (2009), 133-152. https://doi.org/10.1007/s10884-008-9126-1
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phase Portraits of a Family of Hamiltonian Cubic Systems;Differential Equations and Dynamical Systems;2024-04-05