Author:
Huu-Tai Pierre Chau,Ducomet Bernard
Abstract
We study the spectral properties of a 1D model of optical potential introduced by Morillon and Romain [21] in the context of nuclear reactions. We can localize the discrete spectrum and estimate the number of eigenvalues. We also study the continuous spectrum with possibly embedded spectral singularities and give an expansion formula for an arbitrary function on a set of generalized eigenfunctions. We briefly study the resonances of a related model.
For more information see https://ejde.math.txstate.edu/Volumes/2021/36/abstr.html
Reference32 articles.
1. E. Bairamov, O. C ̧ akar; Quadratic pencil of Schrodinger operators with spectral singularities, J. of Math. Anal. and App., 216 (1997), 302-320.
2. E. Bairamov, O. C ̧ akar, A. M. Krall; An eigenfunction expansion for a quadratic pencil of Schrodinger operators with spectral singularities, J. of Diff. Equ., 151 (1999), 268-289.
3. G. Ba ̧scanbaz Tunca, E. Bairamov; Discrete spectrum and principal functions of non- selfadjoint differential operators, Czech. Math. Journal, 49 (1999), 689-700.
4. F. A. Berezin, M. A. Shubin; The Schrodinger equation, Kluwer Academic Publishers, 1991.
5. C. Bloch; Cours sur la theorie des reactions nucleaires, Commissariat `a laEnergie Atomique, Centre d'Etudes Nucleaires de Saclay, 1955-1956.