Author:
Bozorgnia Farid,Lewintan Peter
Abstract
In this note, we study the asymptotic behavior, as t tends to infinity, of the solution u to the evolutionary damped p-Laplace equation $$ u_{tt}+ u_t =\Delta_p u $$ with Dirichlet boundary conditions. Let \(u^*\) denote the stationary solution with same boundary values, then we prove the \(W^{1,p}\)-norm of \(u(t) - u^*\) decays for large \(t\) like \(t^{-1/((p-1)p)}\), in the degenerate case \(p\geq 2\).
For more information see https://ejde.math.txstate.edu/Volumes/2021/73/abstr.html
Reference13 articles.
1. F. Alvarez; On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim., 38 (2000), no. 4, pp. 1102-1119.
2. H. Attouch, X. Goudou, P. Redont; The heavy ball with friction method. I. The continuous dynamical system, Commun. Contemp. Math., 2 (2000), no. 1, pp. 1-34.
3. G. Baravdish, O. Svensson, M. Gulliksson, Y. Zhang; A damped flow for image denoising, arXiv:1806.06732
4. [math.NA]
5. S. Edvardsson, M. Neuman, P. Edstrom, H. Olin; Solving equations through particle dynamics, Comput. Phys. Commun., 197 (2015), pp. 169-181.