Extending Putzer's representation to all analytic matrix functions via omega matrix calculus

Author:

Neto Antonio Francisco

Abstract

We show that Putzer's method to calculate the matrix exponential in [28] can be generalized to compute an arbitrary matrix function defined by a convergent power series. The main technical tool for adapting Putzer's formulation to the general  setting is the omega matrix calculus; that is, an extension of MacMahon's partition analysis to the realm of matrix calculus and the method in [6]. Several results in the literature are shown to be special cases of our general formalism, including the computation of the fractional matrix exponentials introduced by Rodrigo [30].Our formulation is a much more general, direct, and conceptually simple method forcomputing analytic matrix functions. In our approach the recursive system of  equations the base for Putzer's method is explicitly solved, and all we need todetermine is the analytic matrix functions. For more information see https://ejde.math.txstate.edu/Volumes/2021/97/abstr.html

Publisher

Texas State University

Subject

Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3