Author:
Zhang Jichao,Bu Shangquan
Abstract
In this article, we study the \(\ell^p\)-maximal regularity for the fractional difference equation $$ \Delta^{\alpha}u(n)=Tu(n)+f(n), \quad (n\in \mathbb{N}_0). $$ We introduce the notion of \(\alpha\)-resolvent sequence of bounded linear operators defined by the parameters \(T\) and \(\alpha\), which gives an explicit representation of the solution. Using Blunck's operator-valued Fourier multipliers theorems on \(\ell^p(\mathbb{Z}; X)\), we give a characterization of the \(\ell^p\)-maximal regularity for \(1 < p < \infty\) and \(X\) is a UMD space.
For more information see https://ejde.math.txstate.edu/Volumes/2024/20/abstr.html
Reference22 articles.
1. T. Abdeljawad, F. M. Atici; On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1-13.
2. R. P. Agarwal, C. Cuevas, C. Lizama; Regularity of Difference Equations on Banach Spaces, Springer-Verlag, 2014.
3. W. Arendt, S. Bu; The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240 (2002), 311-343.
4. F. M. Atici, P. W. Eloe; A transform method in discrete fractional calculus, Int. J. Difference Equ., 2 (2007), No. 2, 165-176.
5. F. M. Atici, P. W. Eloe; Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137 (2009), No. 3, 981-989.