Author:
Correia Jeziel N.,Oliveira Claudionei P.
Abstract
In this article, we show the existence of positive solution to the nonlocal system $$\displaylines{ (-\Delta)^s u +a(x)u=\frac{1}{2_s^*} H_u(u,v) \quad \hbox{in }\mathbb{R}^N,\cr (-\Delta)^s v +b(x)v=\frac{1}{2_s^*}H_v(u,v) \quad \hbox{in } \mathbb{R}^N,\cr u,v>0 \quad \text{in } \mathbb{R}^N,\cr u,v\in \mathcal{D}^{s,2 }(\mathbb{R}^N). }$$ We also prove a global compactness result for the associated energy functionalsimilar to that due to Struwe in [26]. The basic tools are some information from a limit systemwith \(a(x) = b(x) = 0\), a variant of the Lion's principle of concentration and compactness for fractional systems, and Brouwer degree theory.
Reference32 articles.
1. Aubin, T.; Problemes isoperimetriques et espaces de Sobolev. J. Differen- tial Geometry 11(4) (1976), 573-598.
2. Alves, C. O.; Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.
3. Ambrosio, V.; Concentration phenomena for critical fractional Schrodinger systems, Com- mun. Pure Appl. Anal., 17 (2018), 2085-2123.
4. Applebaum, D.; Levy processes-from probability to finance and quantum groups, Not. Am. Math. Soc., 51 (2004), 1336-1347.
5. Applebaum, D.; Levy Processes and Stochastic Calculus, second edition, Cambridge Studies in Advanced Mathematics, vol.116, Cambridge University Press, Cambridge, 2009.