Author:
Dos Santos Gelson C. G.,Figueiredo Giovany M.,Tavares Leandro S.
Abstract
In this article we study the existence of solutions for nonlocal systems involving the p(x)-Laplacian operator. The approach is based on a new sub-super solution method.
For more information see https://ejde.math.txstate.edu/Volumes/2020/25/abstr.html
Reference47 articles.
1. E. Acerbi, G. Mingione; Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
2. W. Allegretto, Y. X. Huang; A Picone's identity for the p-Laplacian an applications, Nonlinear Anal., 32 (7) (1998) 819-830. https://doi.org/10.1016/S0362-546X(97)00530-0
3. C. O. Alves, A. Moussaoui; Existence and regularity of solutions for a class of singular (p(x), q(x))-Laplacian systems, 2016, https: //doi.org/10.1080/17476933.2017.1298589
4. C. O. Alves, A. Moussaoui, L. S. Tavares; An elliptic system with logarithmic nonlinearity. 2017, (to appear). https://doi.org/10.1515/anona-2017-0200
5. A. Ambrosetti, H. Brezis, G. Cerami; Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献