Author:
Carriao Paulo Cesar,Costa Augusto Cesar dos Reis,Miyagaki Olimpio Hiroshi,Vicente Andre
Abstract
In this work we study a class of the critical Kirchhoff-type problems in a Hyperbolic space Because of the Kirchhoff term, the nonlinearity \(u^q\) becomes concave for \(2<q<4\), This brings difficulties when proving the boundedness of Palais Smale sequences. We overcome this difficulty by using a scaled functional related with a Pohozaev manifold. In addition, we need to overcome singularities on the unit sphere, so that we use variational methods to obtain our results.
For more information see https://ejde.math.txstate.edu/Volumes/2021/53/abstr.html
Reference39 articles.
1. C. O. Alves, F. J. S. A. Corrˆea, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 no. 1 (2005), 85-93.
2. C. O. Alves, G. M. Figueiredo; Nonlinear perturbations of a periodic Kirchhoff equation in RN , Nonlinear Anal., 75 no. 5 (2012), 2750-2759.
3. M. Bhakta, K. Sandeep; Poincare-Sobolev equations in the hyperbolic spaces, Calc. Var. Partial Differential Equations, 44 nos. 1-2 (2012), 247-269.
4. G. Bianchi, J. Chabrowski, A. Szulkin; On simmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev expoent, Nonlinear Analysis TMA, 25 no. 1 (1995), 41-59.
5. H. Brezis, M. Marcus; Hardy's inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 no. 1-2 (1997), 217-237.