Author:
Guo Cuiping,Guo Shangjiang
Abstract
In this article we analyze the bistable dynamics of a Nicholson's blowflies equation with Allee effect. Using Lyapunov-LaSalle invariance principle, we study the stability and basins of attraction of multiple equilibria.Also we study the existence, stability, and multiplicity of nontrivial steady-state solution and periodic solutions. These solutions generate long transient oscillatory patterns and asymptotic stable oscillatory patterns.
Reference13 articles.
1. W. C. Allee; The Social Life of Animals, Heinemann, London, 1931.
2. F. Brauer, C. Castillo-Chavez; Mathematical Models in Population Biology and Epidemiol- ogy. Springer-Verlag, New York (2001).
3. S. Buedo-Fernandez, E. Liz; On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 1-14.
4. M. Golubitsky, I. Stewart, D. G. Schaeffer; Singularities and Groups in Bifurcation Theory, Springer-Verlag, New York, 1988.
5. S. Guo; Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys. 69 (2018), 10