Author:
Papageorgiou Nikolaos S.,Vetro Calogero,Vetro Francesca
Abstract
We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda>0$$ We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.
Reference16 articles.
1. D. Averna, N. S. Papageorgiou, E. Tornatore; Positive solutions for the Neumann pLaplacian, Monatsh. Math., 185 (2018), no. 6, 557-573. https://doi.org/10.1007/s00605-017-1027-0
2. L. Cherfils, Y. Il0yasov; On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal., 4 (2005), no. 1, 9-22. https://doi.org/10.3934/cpaa.2005.4.9
3. M. Fuchs, G. Li; Variational inequalities for energy functionals with nonstandard growth conditions, Abstr. Appl. Anal., 3 (1998), 495907, 41-64. https://doi.org/10.1155/S1085337598000438
4. L. Gasiński, N. S. Papageorgiou; Exercises in Analysis. Part 2. Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-27817-9
5. S. Hu, N. S. Papageorgiou; Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.