Abstract
In this article, we study the existence of solutions for the fractional Hamiltonian system $$\displaylines{ {}_tD_\infty^\alpha(_{-\infty}D_t^\alpha u(t))+L(t)u(t)=\nabla W(t,u(t)),\cr u\in H^\alpha(\mathbb{R},\mathbb{R}^N), }$$ where \( {}_tD_\infty^\alpha\) and \(_{-\infty}D_t^\alpha\) are the Liouville-Weyl fractional derivatives of order \(1/2<\alpha<1\), \(L\in C(\mathbb{R},\mathbb{R}^{N\times N})\) is a symmetric matrix-valued function, which is unnecessarily required to be coercive, and \(W\in C^1(\mathbb{R}\times\mathbb{R}^N,\mathbb{R})\) satisfies some kind of local superquadratic conditions, which is rather weaker than the usual Ambrosetti-Rabinowitz condition.
For more information see https://ejde.math.txstate.edu/Volumes/2020/29/abstr.html
Reference25 articles.
1. O. Agrawal, J. Tenreiro Machado, J. Sabatier; Fractional derivatives and thier application: Nonlinear dynamics, Springer-Verlag, Berlin, 2004.
2. T. M. Atanackovic, B. Stankovic; On a class of differential equations with left and right fractional derivatives, ZAMM Z. Angew. Math. Mech., 87 (2007), no. 7, 537-546. https://doi.org/10.1002/zamm.200710335
3. A. Benhassine; Ground state solution for a class fractional Hamiltonian syatems, Ric. Mat., 68 (2019), no. 2, 727-743. https://doi.org/10.1007/s11587-019-00437-z
4. A. Benhassine; Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian systems, Electron. J. Differ. Equ., 2017 (2017), no. 93, 1-15.
5. D. Baleanu, J. Trujillo; On exact solutions of a class of fractionalEuler-Lagrange equations, Nonlinear Dyn., 52 (2008), no. 4, 331-335. https://doi.org/10.1007/s11071-007-9281-7
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献