Author:
Benali Aharrouch,Jaouad Bennouna
Abstract
We study the existence of solutions for the nonlinear degenerated elliptic problem $$\displaylines{ -\operatorname{div} a(x,u,\nabla u)=f \quad\text{in } \Omega,\cr u=0 \quad\text{on }\partial\Omega, }$$ where \(\Omega\) is a bounded open set in \(\mathbb{R}^N\), \(N\geq2\), a is a Caratheodory function having degenerate coercivity \(a(x,u,\nabla u)\nabla u\geq \nu(x)b(|u|)|\nabla u|^p\), 1<p<N, \(\nu(\cdot)\) is the weight function, b is continuous and \(f\in L^r(\Omega)\).
For more information see https://ejde.math.txstate.edu/Volumes/2020/105/abstr.html
Reference18 articles.
1. L. Aharouch, Y. Akdim, E. Azroul; Quasilinear degenerate elliptic unilateral problems, Abstract and Applied Analysis, 1 (2005) 11-31. https://doi.org/10.1155/AAA.2005.11
2. Y. Akdim, E. Azroul, A. Benkirane; Existence of solutions for quasilinear degenerate elliptic equations, Electronic J. Diff. Equ., 2001 (2001) No. 71, 1-19
3. A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., (4) 182 (1) (2003) 53-79. https://doi.org/10.1007/s10231-002-0056-y
4. A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non-uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena, 46 (Suppl.) (1998) 381-391.
5. A. Alvino and Trombetti; Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri. Ricerche Mat., 1978, 27, 413-428
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献