What Controls Early Restraining Bend Growth? Structural, Morphometric, and Numerical Modeling Analyses From the Eastern California Shear Zone

Author:

Garvue Max M.1ORCID,Spotila James A.1ORCID,Cooke Michele L.2ORCID,Curtiss Elizabeth R.1ORCID

Affiliation:

1. Department of Geosciences Virginia Tech Blacksburg VA USA

2. Department Geosciences University of Massachusetts Amherst MA USA

Abstract

AbstractRestraining bends influence topography, strike‐slip evolution, and earthquake rupture dynamics, however the specific factors governing their geometry and development in the crust are not well established. These relationships are challenging to investigate in field examples due to cannibalization and erosion of earlier structures with cumulative strain. To address this knowledge gap, we investigated the structure, morphology, and kinematics of 22 basement‐cored restraining bends on low net‐slip faults (<10 km) within the southern Eastern California shear zone (SECSZ) via mapping, topographic analyses, and 3D numerical modeling. The bends are self‐similar in form with most exhibiting focused relief between high‐angle bounding faults with an arrowhead shape in map view and a “whaleback” longitudinal profile. Slight changes in that form occur with increasing size indicating predictable growth that appears to be primarily controlled by local fault geometries (i.e., bifurcation angle), rather than the influence of fault obliquity relative to far‐field plate motion, due to inefficient slip‐transfer across interconnected irregularly trending closely spaced faults. Modeling results indicate that the self‐similar fault‐bound geometry of SECSZ restraining bends may arise from elevated shear strain at the outer corners of single transpressional fault bends with increasing cumulative slip. This, in turn, promotes growth of a new fault leading to efficient accommodation of local convergent strain via uplift between bounding faults. Finally, our results indicate that the kilometer‐scale restraining bends contribute minimally to regional contraction as they only penetrate the upper third of the seismogenic crust and are therefore also unlikely to impede large earthquake surface ruptures.

Funder

Division of Earth Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3