Structural Restorations of the Complete Conjugate US‐Mexico Eastern Gulf of Mexico Margin

Author:

Curry Magdalena Ellis1ORCID,Hudec Michael R.2,Peel Frank J.2,Fernandez Naiara3,Apps Gillian2,Snedden John W.4

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences North Carolina State University Raleigh NC USA

2. Jackson School of Geosciences Bureau of Economic Geology The University of Texas at Austin Austin TX USA

3. Hemholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

4. Jackson School of Geosciences Institute for Geophysics The University of Texas at Austin Austin TX USA

Abstract

AbstractWe present the first sequential structural restoration with flexural backstripping of the Gulf of Mexico US‐Mexico conjugate margin salt basin. We construct four large‐scale (100s of km) balanced, sequential structural restorations to investigate spatio‐temporal patterns of subsidence, geometry of the original salt basin, feedbacks between post‐salt structural and stratigraphic evolution, paleo‐bathymetry, and crustal configurations. The restorations are based on interpretations of 2D and 3D seismic data, and include sequential sedimentary decompaction, flexural isostatic backstripping, and thermal isostatic corrections. The spatially variable crustal thinning factor is directly measured from seismic data, and lithologic parameters are determined by well penetrations. We present a model for the original salt basin and discuss evidence for and implications of a deep water salt basin setting for the GoM. Our analysis suggests a salt basin that contained ∼1–2 km thick salt in a basin 175–390 km across with ∼1 km of bathymetry after salt deposition. The base of salt is mostly smooth with <1 km of local relief in the form of normal faults that disrupt a pre‐salt sedimentary section. We find that supra‐salt extension and shortening are not balanced, with measurable extension exceeding shortening by 18–30 km on each cross‐section. Our subsidence analysis reveals anomalous subsidence totaling 1–2 km during Late Jurassic and Early Cretaceous times that may reflect dynamic topography or depth‐dependent thinning. We offer an interpretation of crustal breakup invoking pre‐salt clastic sedimentation, salt deposition in a deep water syn‐thinning basin, and post‐salt lower‐crustal exhumation.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3