Temperature, Deformation, and Mass Transfer in a Hot Orogen: Insights From Thermokinematic Forward Models for Far Western Nepal

Author:

Braza M.1ORCID,McQuarrie N.1ORCID,Robinson D. M.2ORCID,Webb L. E.3ORCID

Affiliation:

1. Department of Geology and Environmental Science University of Pittsburgh Pittsburgh PA USA

2. Department of Geological Sciences University of Alabama Tuscaloosa AL USA

3. Department of Geography and Geosciences University of Vermont Burlington VT USA

Abstract

AbstractExhumation and cooling pathways of mid‐crustal metamorphic rocks in the western Nepal Himalaya can be replicated by fold‐thrust belt structures with displacement localized along discrete décollements. New and published muscovite 40Ar/39Ar, zircon U‐Th/He, and apatite fission track cooling ages, peak temperature estimates, geologic mapping, and basin data are integrated with thermokinematic forward models to constrain the geometry, kinematics, and rates of shortening in far western Nepal. The best fit to peak temperatures, cooling ages, and basin accumulation data is achieved with a largely in‐sequence kinematic order, with out‐of‐sequence motion on the Ramgarh‐Munsiari thrust. Fast rates (∼20–40 mm/yr) are required during shortening on early, large displacement faults at ∼23–12 Ma and decrease to ∼10–15 mm/yr during formation of the Lesser Himalayan duplex until ∼1 Ma. Thermokinematic models highlight the relationship between peak temperature, geometry, and shortening on the large displacement Main Central and Ramgarh‐Munsiari thrusts. In the thermokinematic models, we observe a relationship between the location of frontal ramps for the faults that displace lower Lesser Himalayan units and the ∼375°C isotherm, immediately before the ramp becomes active. These correlations suggest that temperature exerts a first‐order control on thrust geometry in a hot orogen. Viable models highlight the position of active ramps, kinematic order of faults, timing of fault motion, and reduction in shortening rates that are required to reproduce the surface geology, basin accumulation, peak temperature conditions, and timing of exhumation. Cooling ages are far more sensitive to the age of fault motion than the rate of fault motion.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3