Age, Kinematic and Thermal Constraints of Syn‐Orogenic Low‐Temperature Deformation Events: Insights From Thermochronology and Structural Data of the Nekézseny Thrust (Alpine‐Carpathian‐Dinaric Area)

Author:

Oravecz Éva1ORCID,Benkó Zsolt23,Arató Róbert24,Dunkl István4ORCID,Héja Gábor5,Kövér Szilvia16ORCID,Németh Tibor7,Fodor László16ORCID

Affiliation:

1. Department of Physical and Applied Geology Institute of Geography and Earth Sciences Eötvös Loránd University Budapest Hungary

2. Institute of Nuclear Research of the Hungarian Academy of Sciences Debrecen Hungary

3. Department of Mineralogy and Geology Institute of Earth Sciences University of Debrecen Debrecen Hungary

4. Department of Sedimentology and Environmental Geology Geoscience Center University of Göttingen Göttingen Germany

5. Supervisory Authority of Regulatory Affairs Budapest Hungary

6. Hungarian Research Network Institute of Earth Physics and Space Science Sopron Hungary

7. Department of Geology and Meteorology Institute of Geography and Earth Sciences University of Pécs Pécs Hungary

Abstract

AbstractUnraveling the age and kinematics of low temperature deformation events is crucial in understanding the late‐stage evolution of orogens. However, accurate age constraints can often be challenging to obtain due to unideal outcrop conditions, large sedimentary hiatuses or the lack of well‐defined thermal events. In this study, we show on the example of the Nekézseny Thrust, a poorly exposed late orogenic thrust in the southern Western Carpathians, that a combined approach of structural analysis and multi‐method thermochronology can provide the necessary temporal, kinematic and thermal constraints for a detailed reconstruction of the deformation history. While structural mapping revealed that the Late Cretaceous Uppony Gosau Basin in the footwall of the Nekézseny Thrust underwent a significant post‐Campanian and pre‐Miocene shortening, K/Ar dating of fault gouge samples from the main fault zone constrained the primary thrusting event to the Maastrichtian. Based on the acquired apatite fission‐track and (U‐Th)/He ages, subsequent heating of the Upper Cretaceous sediments due to tectonic burial was limited to 75–100°C, followed by deformation‐related and gradual cooling between the Eocene and Early Miocene. Considering the reconstructed deformation history, as well as the large‐scale tectonic affinity of the displaced units in its footwall and hanging wall, the Nekézseny Thrust is a far‐traveled (ca. 600 km) segment of the Late Cretaceous Alps‐Dinarides contact zone, whose development was linked to the switch from lower plate to upper plate position with respect to the Sava Zone and Alpine Tethys sutures, respectively.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3