Decoding the Link Between Magmatic Cyclicity and Episodic Variation of Tectonics and Crustal Thickness in the Overriding Plate

Author:

Meng Lingtong12,Chu Yang12ORCID,Lin Wei12ORCID,Zhao Liang12ORCID,Wei Wei12,Liu Fei3,Wang Yin4,Song Chao12,Wu Qinying12

Affiliation:

1. State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. Wuhan Center of China Geological Survey (Central South China Innovation Center for Geosciences) Wuhan China

4. Geosteering & Logging Research Institute Sinopec Matrix Corporation Qingdao China

Abstract

AbstractCyclical change in subduction angle is the favorable mechanism to elucidate the cyclicity of continental arc magmatism, however, the role of episodic tectonics and variation of the lithosphere in overriding plates is much underestimated. Here we focus on structural, magnetic, and gravitational features of the Late Jurassic to Early Cretaceous granites in the Mesozoic Paleo‐Pacific arc system of the North China block. By unraveling the emplacement process and regional tectonics, we establish a three‐staged extension‐contraction cycle with crustal thickness variation controlling the magmatic flux and behavior. The Late Jurassic extension produced high‐flux crustal‐derived magma (1.87 × 103 km2/Myr), but the thick crust >45 km accumulated large granitic batholiths by multi‐feeders emplacement at the middle‐lower crust and prevented magma ascent and eruption. Subsequently, the Latest Jurassic to Earliest Cretaceous contraction resulted in the magmatic lull and thickened crust of ca. 60 km, fueling crustal material for the ensuing magmatism. In the Early Cretaceous, intense crustal extension thinned the crust to 30 km and largely enhanced the magmatic flux (3.03 × 103 km2/Myr). The magma is prone to penetrate the thin crust with an intensive eruption. A small amount of magma was stored, and the emplacement was controlled by ductile detachments or normal faults. Our model emphasizes episodic the deformation of lithosphere and associated crustal thickness variation in controlling magma production, which may shed new light in understanding the magmatic cyclicity under continuous subduction.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Youth Innovation Promotion Association

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3