Detachment and Transfer Fault Systems in the Northern South China Sea, Insights Into 3D Tectonic Segmentation of Rifted Margins

Author:

Hao Shihao12ORCID,Mei Lianfu1ORCID,Zheng Jinyun3,Ranero César R.24

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources Ministry of Education China University of Geosciences Wuhan China

2. Barcelona Center for Subsurface Imaging Institut de Ciéncies del Mar (CSIC) Barcelona Spain

3. Shenzhen Branch of the China National Offshore Oil Corporation Shenzhen China

4. ICREA Passeig Lluís Companys 23 Barcelona Spain

Abstract

AbstractThe 2D rifting modes interpreted in traditional “magma‐poor” and “magma‐rich” margins cannot explain the crustal structure and inferred rifting processes in the northern South China Sea (SCS) rifted margin. The “intermediate‐type” terminology has been therefore applied to the mid‐northern SCS, where a “wide‐rift” model has been widely accepted. However, the tectono‐magmatic processes of the SCS are still debated and at least five contrasting models exist. We present a compilation of 3‐D seismic volumes and regional 2‐D seismic surveys covering the entire Baiyun and Liwan Sub‐basins to investigate their tectonic structure and faulting style in this “wide‐rift” region. We interpret two segments with contrasting tectonic styles separated by a volcanic lineament and steep transfer faults. The Baiyun Sub‐basin was controlled by a landward‐dipping detachment system. The Liwan Sub‐basin, however, was formed by a ∼100 km‐long oceanward‐dipping, concave‐up detachment fault working at a low angle of <10°. The lateral boundaries of the detachment system were mechanically decoupled from surrounding tectonics by a volcanic lineament/transfer zone to the west and a > 190 km‐long N‐S‐trending left‐lateral strike‐slip fault to the east. The planar low‐angle detachment does not resemble classical metamorphic core complex domes interpreted previously. Our results indicate a 60‐80 km‐wavelength segmentation within a single “wide‐rift” system, indicating complex 3D rifting during crustal extension. This study supports that the intermediate SCS margin had a kinematically complex deformation style locally dominated by the interaction between detachment and transfer fault systems that might be yet unrecognized in other margins.

Funder

National Major Science and Technology Projects of China

China Postdoctoral Science Foundation

Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3