Deep Seismic Reflection Imaging of Mesozoic Kachchh Rift, NW India: Implications for Evolution

Author:

Mandal Biswajit12ORCID,Vijaya Rao V.1,Karuppannan P.1,Laxminarayana K.12,Chopra Sumer3,Ravi Kumar M.12,Kumar Prakash12ORCID

Affiliation:

1. CSIR‐ National Geophysical Research Institute Hyderabad India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India

3. Institute of Seismological Research Gandhinagar India

Abstract

AbstractDeep crustal seismic reflection profiling is carried out for first time across various tectonic domains of seismically active Mesozoic Kachchh rift basin, formed during the breakup of Gondwanaland. The seismic data, processed using the common reflection surface stack approach, provided maiden images of the shallow and deep sub‐surface structures in the region. These images reveal a 15 km thick subhorizontal lower crustal reflection fabric and crustal‐scale domal‐type structure extending from the surface to the Moho. We interpret the earlier structure represent magmatic underplating and the latter as the Kachchh Mainland uplift. We find large variations in the thickness of sediments from 150 m to 6.5 km and crustal thickness from 45 to 35 km from north to south, with a Moho up warp of 4 km beneath the Kachchh Mainland fault. The Kachchh rift basin exhibits an unusually thick crust of 45 km, contrary to many rift basins. We interpret the syn‐rifting and the Reunion mantle plume activity, manifested as Deccan volcanics, are responsible for magmatic underplating and crustal thickening. Uplift in the region is multi‐genetic in origin. Present study illuminated new faults and nature of various other faults. Moderate to large earthquakes in the region are attributed to the regional and local stresses resulting from the plate boundary and heterogeneous crustal structure. Based on the mafic lower crust and distribution of aftershocks through the entire crust, we interpret the lower crust is brittle, contrary to most models of continental rheology.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3