Exhumation of an Ultrahigh‐Pressure Slice From the Upper Plate of the Caledonian Orogen—A Record From Titanite in North‐East Greenland

Author:

Gilotti Jane A.1ORCID,McClelland William C.1ORCID,Cao Wentao2ORCID,Coble Matthew A.34

Affiliation:

1. Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA

2. Department of Geology and Environmental Sciences State University of New York at Fredonia Fredonia NY USA

3. Department of Geological Sciences Stanford‐USGS Ion Microprobe Laboratory Stanford CA USA

4. GNS Science Avalon New Zealand

Abstract

AbstractUltrahigh‐pressure (UHP) rocks in North‐East Greenland lie within a larger region of high‐pressure Laurentian crust formed in the overthickened upper plate of the collision with Baltica. Coesite‐bearing zircon dates UHP metamorphism to 365–350 Ma, which formed at the end of the Caledonian collision as a result of intracontinental subduction facilitated by strike‐slip faults that broke the lithosphere. Rutile is the stable Ti‐bearing phase at UHP, while titanite forms on the retrograde path. Trace elements and U‐Pb in titanite were analyzed for six UHP gneisses. Zr‐in‐titanite temperatures range from 764 to 803°C and lie on the isobaric part of the pressure‐temperature path at 1.2 GPa, which fits Ti‐phase stability determined by thermodynamic modeling. Large (>600 μm), zoned titanite preserves three distinct trace element patterns that are due to metamorphism, melting and garnet breakdown. Weighted mean 206Pb/238U ages range from 347 ± 5 Ma to 320 ± 11 Ma, but age variation as a function of trace element domain for individual samples is not resolvable within uncertainty. Titanite records a prolonged period of exhumation that is also seen in the zircon record, where phengite decompression melting started at ca. 347 Ma, leucosome emplacement accompanied retrograde metamorphism from 350 to 330 Ma; and titanite grew during isobaric cooling from 345 to 320 Ma when the UHP rocks stalled at lower crustal levels. The same transforms that originally break the lithosphere play a significant role in channeling the UHP rocks back to the lower crust via buoyancy driven exhumation, after which time titanite formed.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3