Neogene‐Recent Reactivation of Pre‐Existing Faults in South‐Central Vietnam, With Implications for the Extrusion of Indochina

Author:

Richard Nicholas1ORCID,Burberry Caroline M.1ORCID,Hoang Nguyen2ORCID,Anh Le Duc3,Dinh Sang Q.4,Elkins Lynne J.1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences University of Nebraska‐Lincoln Lincoln NE USA

2. Institute of Geological Sciences Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam

3. Institute of Marine Geology and Geophysics VAST Hanoi Vietnam

4. South Vietnam Geological Mapping Division Ho Chi Minh City Vietnam

Abstract

AbstractVietnam contains complex faults coupled with a diffuse igneous province that has been active since the mid‐Miocene. However, existing fault maps demonstrate little consensus over the location of Neogene basalt flows and relative ages of mapped faults, which complicates interpretations of tectonic model for the evolution of Indochina. This paper identifies discrete tectonic blocks within Vietnam and aims to define the Neogene‐Recent tectonic setting and kinematics of south‐central Vietnam by analyzing the orientation, kinematics, and relative ages of faults across each block. Fault ages and relative timing are estimated using cross‐cutting relationships with dated basalt flows and between slickenside sets. Remote sensing results show distinct fault trends within individual blocks that are locally related to the orientations of the basement‐involved block‐bounding faults. Faults observed in the field indicate an early phase of dip‐slip motion and a later phase of strike‐slip motion, recording the rotation of blocks within a stress field. Faulting after the change in motion of the Red River Fault Zone at ∼16 Ma is inferred, as faults cross‐cut basalt flows as young as ∼0.6 Ma. Strike‐slip motion on block‐bounding faults is consistent with rotation and continuous extrusion of each block within south‐central Vietnam. The rotation of the blocks is attributed to the “continuum rubble” behavior of small crustal blocks influenced by upper mantle flow after the collision between India and Eurasia. We infer a robust lithospheric‐asthenospheric coupling in the extrusion model, which holds implications for other regions experiencing extrusion even in the absence of a free surface.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3