Radial and Vertical Structures of Plasma Disk in Jupiter's Middle Magnetosphere

Author:

Wang Jian‐Zhao12ORCID,Bagenal Fran1ORCID,Wilson Robert J.1ORCID,Nerney Edward1,Ebert Robert W.34ORCID,Valek Philip W.3ORCID,Allegrini Frederic34ORCID

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA

2. Department of Astrophysical and Planetary Sciences University of Colorado Boulder Boulder CO USA

3. Southwest Research Institute San Antonio TX USA

4. University of Texas at San Antonio San Antonio TX USA

Abstract

AbstractThe Juno mission flew through the plasma disk near the equator in Jupiter's magnetosphere frequently. We identify 274 plasma disk crossings of Juno between 10 and 40 RJ from PJ5 to PJ44. Using a forward modeling method that combines the JADE‐I time‐of‐flight and SPECIES data sets, we perform a survey of ion properties in the plasma disk. Ions are heated from 1.5 to 6 keV between 15 and 30 RJ. Density and temperature are locally anti‐correlated. Assumed to be related to centrifugal instabilities, cold, dense plasma are commonly observed near midnight. Plasma corotates around Jupiter and the rigid corotation breaks down outside 15–20 RJ. The plasma bulk velocity increases from the post‐dusk sector to the pre‐dawn sector featuring injection flows in the pre‐dawn sector, which is consistent with the Vasyliunas cycle. Strong outflows (>100 km/s) are commonly observed outside 20 RJ and the average radial velocity increases with radial distance. The ion abundance changes between 10 and 18 RJ and that might indicate plasma sources and/or sinks near Europa and Ganymede. The vertical distribution of ions is controlled by the balance between centrifugal, pressure gradient, and ambipolar electric field forces. An example near the M‐shell of 13.5 shows that average plasma temperature increases by a factor of 10 from the disk center to edge, because cold ions are more confined near the equator. Lighter ions with higher charge states have more mobility along the field line and have larger scale heights. The observations are compared with multi‐species diffusive equilibrium model.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3