The Effect of the Interplanetary Magnetic Field Clock Angle and the Latitude Location of the Intense Crustal Magnetic Field on the Ion Escape at Mars: An MHD Simulation Study

Author:

Wang Ming1ORCID,Guan Zijian12,Xie Lianghai3ORCID,Lu Jianyong1ORCID,Wei Guanchun1,Sui Haoyang4,Zhang Jiaqi1,Li Jinyu1,Zhang Hanxiao1,Qu Baohang1,Xu Qi3,Li Lei3ORCID

Affiliation:

1. Institute of Space Weather School of Atmospheric Physics Nanjing University of Information Science and Technology Nanjing China

2. Anhui Climate Center Anhui meteorological Administration Hefei China

3. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing China

4. College of Meteorology and Oceanography National University of Defense Technology Changsha China

Abstract

AbstractIn this paper, using a three‐dimensional multifluid MHD model, we studied the effects of the interplanetary magnetic field (IMF) clock angle and the latitude position of the intense crustal magnetic field (ICMF) on the escape of ions O+, , and at Mars. The main results are as follows: (a) The IMF clock angle affects the ion escape at Mars. When the ICMF is on the dayside, the ion escape rate reaches a maximum at the IMF clock angles close to 60°–90° and a minimum at the IMF clock angles close to 120°–150°, because the ICMF can change the topology of the magnetic field and affect the interaction between the solar wind and Mars. The difference between the maximum and minimum ion escape rates due to the IMF clock angle can reach over 50%. (b) Compared with the −ESW hemisphere, the escape flux of and in the +ESW hemisphere is more significant. However, O+ generally has a larger escape flux in the −ESW hemisphere. The different results in the ±ESW hemispheres might be due to the larger distribution of the hot oxygen corona, which changes the flow pattern of O+. (c) The latitude location of the ICMF can also affect the ion escape. When the ICMF is on the dayside, as the subsolar point varies from 25°S to 25°N, that is, the intense crustal magnetic field position keeps shifting southward, the ion escape rate shows a gradual increase.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3