Concurrent Observation of High‐Frequency EMIC Waves and Low‐Harmonic MS Waves Within a Magnetic Dip in the Inner Magnetosphere

Author:

Xue Zuxiang1ORCID,Yuan Zhigang1ORCID,Yu Xiongdong1ORCID,Ouyang Zhihai2,Deng Dan1ORCID

Affiliation:

1. School of Electronic Information Wuhan University Wuhan China

2. Institute of Space Science and Technology Nanchang University Nanchang China

Abstract

AbstractElectromagnetic ion cyclotron (EMIC) waves and fast magnetosonic (MS) waves were previously reported to be simultaneously generated by ring current protons (10s keV) within the magnetic dip. In this work, we present a distinct physical scenario of concurrent high‐frequency EMIC (HFEMIC) and MS waves within a magnetic dip where low‐energy (10s–100s eV) and hot (10s keV) protons facilitate the local growth of HFEMIC and MS waves, respectively. Moreover, the low‐energy protons exhibit remarkable perpendicular flux enhancements, which are well modulated by MS waves as evidenced by their significant correlation coefficient (∼0.78). Consequently, the concurrent two wave modes should arise from the complicated coupling between HFEMIC and MS waves, marking a departure from previous studies. Our observations demonstrate that the magnetic dip can provide favorable conditions for such intricate coupling processes, offering novel insights into its impact on magnetospheric dynamics.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3