Classifying 8 Years of MMS Dayside Plasma Regions via Unsupervised Machine Learning

Author:

Toy‐Edens Vicki1ORCID,Mo Wenli1ORCID,Raptis Savvas1ORCID,Turner Drew L.1ORCID

Affiliation:

1. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

Abstract

AbstractThe Magnetospheric Multiscale (MMS) mission has probed Earth's magnetosphere, magnetosheath, and near‐Earth solar wind for over 8 years. We utilize an unsupervised learning algorithm, Gaussian mixture model clustering, along with feature generation and simple post‐cleaning methods to automatically classify 8 years of MMS dayside observations into four plasma regions (magnetosphere, magnetosheath, solar wind, and ion foreshock) at 1‐min resolution. With these plasma regions distinguished, we have also identified boundary surfaces (e.g., magnetopause, bow shock). We validate our results on manually generated and rule based region labels described in the literature. We report overlap rates in our cluster determined magnetopauses and bow shocks against Scientist‐in‐the Loop (SITL) identified transitions and published databases. Our features are general and our model is extensible, potentially making it applicable to observational data from multiple other missions.

Funder

National Science Foundation

Johns Hopkins University

Massachusetts Medical Society

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3