Comparison of the Ionospheric Dynamo Current of Mars Above InSight and Zhurong Landing Sites: A Modeling Study

Author:

Luo H.12ORCID,Tian L.12ORCID,Du A. M.12ORCID,Ge Y. S.12ORCID,Zhang Y.12ORCID

Affiliation:

1. CAS Engineering Laboratory for Deep Resources Equipment and Technology Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

Abstract

AbstractPrevious observational studies suggest that the surface time‐varying magnetic field of Mars originates in large part from the dynamo currents in the Martian ionosphere. However, whether there are significant differences in the strength, configuration, diurnal, and seasonal variations of the dynamo currents above different regions need to be further studied. In this study, using the ionospheric parameters from Mars Climate Database version 5.3 (MCD v5.3) and 7 years of MAVEN magnetic field measurements, we compare the ionospheric dynamo currents above the landing sites of InSight (4.50°N, 135.62°E) and Zhurong (25.07°N, 109.90°E) and the resulting surface magnetic variations at the two landing sites by conducting a modeling study. We find that the average dynamo current as well as its diurnal magnetic field amplitude on the Martian surface is significantly stronger at InSight than that at Zhurong due to the stronger background magnetic field strength and more perpendicular angle between magnetic field and neutral wind vectors in the dynamo region, though the conductivities is always weaker over InSight landing site. The seasonal variation of the current intensity (represented by differences between northern winter and summer solstices) is prominent over InSight than that over Zhurong because the heliospheric distance effect‐resulted conductivity difference is the dominate factor for the seasonal variations over InSight while both the heliospheric distance and solar zenith angle (SZA) contribute to the current intensity at different Ls over Zhurong. The two factors partially offset each other and lead to a smaller seasonal variation. The role of crustal field, as well as the latitude effects on dynamo currents is also discussed. This study provides an attempt to promote the understanding of the solar wind‐induced magnetosphere‐ionosphere‐surface coupling process.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3