On the Abnormally Strong Westward Phase of the Mesospheric Semiannual Oscillation at Low Latitudes During March Equinox 2023

Author:

Suclupe Jose1ORCID,Chau Jorge L.1ORCID,Conte J. Federico1ORCID,Pedatella Nicholas M.2ORCID,Garcia Rolando3ORCID,Sato Kaoru4ORCID,Zülicke Christoph1,Lima Lourivaldo M.5ORCID,Li Guozhu6ORCID,Bhaskara Rao S. Vijaya7ORCID,Ratnam M. Venkat8,Rodriguez Rodolfo9,Scipion Danny10ORCID

Affiliation:

1. Leibniz‐Institute of Atmospheric Physics at the University of Rostock Kühlungsborn Germany

2. High Altitude Observatory NSF National Center for Atmospheric Research Boulder CO USA

3. Atmospheric Chemistry Observations and Modeling Lab NSF National Center for Atmospheric Research Boulder CO USA

4. Department of Earth and Planetary Science The University of Tokyo Tokyo Japan

5. Universidade Estadual da Paraíba Campina Grande Brazil

6. Beijing National Observatory of Space Environment Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

7. Department of Physics Sri Venkateswara University Tirupati India

8. National Atmospheric Research Laboratory Tirupati India

9. Universidad de Piura Piura Peru

10. Radio Observatorio de Jicamarca Instituto Geofísico del Perú Lima Peru

Abstract

AbstractDifferent meteor radars at low latitudes observed abnormally strong westward mesospheric winds around the March Equinox of 2023, that is, during the first phase of the Mesospheric Semiannual Oscillation. This event was the strongest of at least the last decade (2014–2023). The westward winds reached −80 m/s at 82 km of altitude in late March, and decreased with increasing altitude and latitude. A considerable increase in the diurnal tide amplitude was also observed. The Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension constrained to meteorological reanalysis up to ∼50 km does not capture the observed low‐latitude behavior. Additionally, these strong mesospheric winds developed during the westerly phase of the Quasi‐Biennial Oscillation, in accordance with the filtering mechanism of gravity waves in the stratosphere proposed in previous works. Finally, analysis of SABER temperatures strongly suggests that the breaking of the migrating diurnal tide may be the main driver of these strong winds.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3