Evidence of Groundwater Seepage and Mixing at the Vicinity of a Knickpoint in a Mountain Stream

Author:

Floriancic Marius G.12ORCID,Abhervé Ronan3ORCID,Bouchez Camille4ORCID,Jimenez‐Martinez Joaquin15ORCID,Roques Clément3ORCID

Affiliation:

1. Department of Civil Environmental and Geomatic Engineering ETH Zürich Zürich Switzerland

2. Department of Environmental Systems Science ETH Zürich Zürich Switzerland

3. Centre for Hydrogeology and Geothermics University of Neuchatel Neuchâtel Switzerland

4. Géosciences Rennes ‐ UMR 6118 Université de Rennes CNRS Rennes France

5. Department of Water Resources and Drinking Water Dübendorf Switzerland

Abstract

AbstractStreamflow generation and biochemical hotspots are significantly influenced by groundwater contributions distributed along the drainage network. However, identifying the geomorphic landscape features that drive groundwater‐surface water interactions remains challenging. In this study, we investigate the role of knickpoints in controlling these interactions in a mountainous stream in Switzerland. We employ a combination of synoptic sampling of environmental tracers, endmember mixing calculations, and groundwater flow simulations. Our findings reveal substantial groundwater seepage concentrated near the knickpoint of the main river stem. Using parsimonious groundwater flow modeling, we validate the hypothesis that the topographical shape of the knickpoint enhances local groundwater discharge rates. We quantify that approximately 20% of the total catchment streamflow originates from around the knickpoint. These results indicate that knickpoints are significant hotspots for groundwater seepage and physicochemical mixing, providing a clear method for identifying major localized sources of streamflow generation.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3