The March 1940 Superstorm: Geoelectromagnetic Hazards and Impacts on American Communication and Power Systems

Author:

Love Jeffrey J.1ORCID,Rigler E. Joshua1ORCID,Hartinger Michael D.2ORCID,Lucas Greg M.3ORCID,Kelbert Anna1ORCID,Bedrosian Paul A.4ORCID

Affiliation:

1. U.S. Geological Survey Geomagnetism Program Geologic Hazards Science Center Denver CO USA

2. Space Science Institute Boulder CO USA

3. Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

4. U.S. Geological Survey Geology, Geophysics, and Geochemistry Science Center Denver CO USA

Abstract

AbstractAn analysis is made of geophysical records of the 24 March 1940, magnetic storm and related reports of interference on long‐line communication and power systems across the contiguous United States and, to a lesser extent, Canada. Most long‐line system interference occurred during local daytime, after the second of two storm sudden commencements and during the early part of the storm's main phase. The high degree of system interference experienced during this storm is inferred to have been due to unusually large‐amplitude and unusually rapid geomagnetic field variation, possibly driven by interacting interplanetary coronal‐mass ejections. Geomagnetic field variation, in turn, induced geoelectric fields in the electrically conducting solid Earth, establishing large potential differences (voltages) between grounding points at communication depots and transformer substations connected by long transmission lines. It is shown that March 1940 storm‐time communication‐ and power‐system interference was primarily experienced over regions of high electromagnetic surface impedance, mainly in the upper Midwest and eastern United States. Potential differences measured on several grounded long lines during the storm exceeded 1‐min resolution voltages that would have been induced by the March 1989 storm. In some places, voltages exceeded American electric‐power‐industry benchmarks. It is concluded that the March 1940 magnetic storm was unusually effective at inducing geoelectric fields. Although modern communication systems are now much less dependent on long electrically conducting transmission lines, modern electric‐power‐transmission systems are more dependent on such lines, and they, thus, might experience interference with the future occurrence of a storm as effective as that of March 1940.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3