Global Variations in the Time Delays Between Polar Ionospheric Heating and the Neutral Density Response

Author:

Weimer Daniel R.12ORCID,Mehta Piyush M.3ORCID,Licata R. J.3ORCID,Tobiska W. K.4ORCID

Affiliation:

1. Center for Space Science and Engineering Research Virginia Tech Blacksburg VA USA

2. National Institute of Aerospace Hampton VA USA

3. Department of Mechanical and Aerospace Engineering Statler College of Engineering and Mineral Resources West Virginia University Morgantown WV USA

4. Space Environment Technologies Los Angeles CA USA

Abstract

AbstractWe present results from a study of the time lags between changes in the energy flow into the polar regions and the response of the thermosphere to the heating. Measurements of the neutral density from the Challenging Mini‐satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) missions are used, along with calculations of the total Poynting flux entering the poles. During two major geomagnetic storms in 2003, these data show increased densities are first seen on the dayside edge of the auroral ovals after a surge in the energy input. At lower latitudes, the densities reach their peak values on the dayside earlier than on the night side. A puzzling response seen in the CHAMP measurements during the November 2003 storm was that the density at a fixed location near the “Harang discontinuity” remained at unusually low levels during three sequential orbit passes, while elsewhere the density increased. The entire database of measurements from the CHAMP and GRACE missions were used to derive maps of the density time lags across the globe. The maps show a large gradient between short and long time delays between 60° and 30° geographic latitude. They confirm the findings from the two storm periods, that near the equator, the density on the dayside responds earlier than on the nightside. The time lags are longest near 18–20 hr local time. The time lag maps could be applied to improve the accuracy of empirical thermosphere models, and developers of numerical models may find these results useful for comparisons with their calculations.

Funder

Directorate for Geosciences

NASA Headquarters

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3