Partially Erupted Prominence Material as a Diagnostic of Coronal Mass Ejection Trajectory

Author:

Hovis‐Afflerbach B. A.123ORCID,Thompson B. J.2ORCID,Mason E. I.4ORCID

Affiliation:

1. California Institute of Technology Pasadena CA USA

2. NASA Goddard Space Flight Center Greenbelt MD USA

3. Catholic University of America Washington DC USA

4. Predictive Science Inc. San Diego CA USA

Abstract

AbstractCoronal mass ejections (CMEs) are energetic releases of large‐scale magnetic structures from the Sun. CMEs can have impacts on spacecraft and at Earth. This trajectory is typically assumed to be radial, but often the CME moves outward with some spatial offset from the source region where the eruption initially occurred. A CME is frequently accompanied by a prominence eruption, a movement of cool, dense material up into the corona that can be ejected or fall back down. We investigate eruptions in which some portion of the prominence material falls back to the Sun along field lines which have reconfigured in the eruption, rather than draining back to the source or escaping with the CME. Using a method called persistence mapping, 304 Å images from the Solar Dynamics Observatory (SDO), and coronagraph images from the Solar and Heliospheric Observatory, we measure and compare the offsets in latitude of 20 CMEs and their respective prominences with respect to the source region. The 20 events were chosen to sample over the first 10 years of the SDO mission. We find that the offsets are correlated. We find no difference between eruptions offset toward the equator or the poles, suggesting that the offset is a result of local changes in the eruptive field, rather than of the Sun's global magnetic field structure. These findings help us contextualize individual eruptions and highlight changes in the local magnetic field associated with the prominence eruption.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3